Lüroth's Theorem

Definition 1. Let $u \in F(X) \setminus F$. Suppose $u = \frac{a(X)}{b(X)}$ $\frac{a(X)}{b(X)}$ where $a(X), b(X) \in F[X]$ and $gcd(a(X), b(X)) = 1$. Define degree of u to be

$$
deg(u) = max\{deg(a), deg(b)\}\
$$

Lemma 1. Let $u \in F(X) \setminus F$. Then u is transcendental over F, X is algebraic over $F(u)$ and $[F(X):F(u)] = deg(u)$

Proof. Let $u = \frac{a(X)}{b(X)}$ with $gcd(a(X), b(X)) = 1$. Now $a(T) - b(T)u$ is a polynomial in $F(u)[T]$ with X as a root. So $F(X)$ is algebraic over $F(u)$ and u is transcendental over F (otherwise X will be algebraic over F).

The polynomial $a(T)-b(T)Y \in F[T, Y]$ is irreducible because $a(T)$ and $b(T)$ are relatively

prime. As u is transcendental over F , we have isomorphisms

$$
F[T, Y] \simeq F[T, u], \quad T \leftrightarrow T, \quad Y \leftrightarrow u
$$

so $a(T) - b(T)u$ is irreducible in $F[u, T]$, and hence is irreducible in $F(u)[T]$ by Gauss's lemma. It follows that

$$
[F(X):F(u)] = \deg(u).
$$

 \Box

Theorem 1 (Lüroth). Let $L = F(X)$ with X transcendental over F. Every subfield E of L properly containing F is of the form $E = F(u)$ for some u transcendental over F.

Proof. Let $u \in F(X) \setminus F$. From the lemma

$$
[F(X):E] \leq [F(X):F(u)] = \deg(u)
$$

so X is algebraic over E. Let $[F(X):E]=n$ and

$$
f(T) = Tn + an-1Tn-1 + ... + a0, \quad ai \in E
$$

be the minimal polynomial of X over E . Since X is transcendental over F , there exists i such that $a_i \notin F$ (otherwise X will be algerbaic over F).

Let $d(X) \in F[X]$ be a polynomial of least degree such that $d(X)a_i(X) \in F[X]$ for all j, and let

$$
f_1(X,T) = df(T) = dT^n + da_{n-1}T^{n-1} + \dots + da_0 \in F[X,T]
$$
 (1)

Then f_1 is primitive as a polynomial in T (It is the primitive part of f). Let $a_n = 1$, so the coefficients of f_1 are $\{da_i\}_{i=0}^n$ when regarded as a polynomial in T. The degree m of f_1 in X is the largest degree of one of the polynomials $da_0(X)$, $da_1(X)$, ..., $da_n(X)$ say $m = \deg(da_i)$

Claim. If $deg(da_i) = deg_X(f_1) = m$ then $a_i \notin F$. In particular $i \neq n$.

Proof. Assume on the contrary $a_i \in F$. So $deg(da_i(X)) = deg(d(X)) \geq deg(da_i(X))$ for $j \neq i$ which implies $deg(d(X)X^n) > deg(da_j(X)X^j)$ for all $j \neq n$. Because X is root of f_1 , subsittuting $T = X$ in [\(1\)](#page-0-0), we get

$$
d(X)X^{n} + da_{n-1}(X)X^{n-1} + ... + da_{0}(X) = 0
$$

\n
$$
\Rightarrow \deg(d(X)X^{n}) = \deg(da_{n-1}(X)X^{n-1} + ... + da_{0}(X)) < \deg(d(X)X^{n})
$$

\nction.

Contradiction.

Suppose $a_i(X) = \frac{b(X)}{c(X)}$ with b,c relatively prime polynomials in $F[X]$. From the claim $deg(a_i(X)) \geq 1$ so $b(T) - c(T)a_i(X) \in E[T]$ is a non-constant polynomial. Now X is a root of $b(T) - c(T)a_i(X) \in E[T]$, so it is a factor of f, say

$$
f(T)q(T) = b(T) - c(T)a_i(X), \quad q(T) \in E[T]
$$

Multiplying the equation by $c(X)$, we get

$$
c(X)f(T)q(T) = c(X)b(T) - c(T)b(X)
$$

As f_1 is the primitive part of f, it divides $c(X)b(T) - c(T)b(X)$ in $F[X,T]$, so there exists a polynomial $h(X,T) \in F[X,T]$ such that

$$
f_1(X,T)h(X,T) = c(X)b(T) - c(T)b(X)
$$
\n(2)

In the above equation, the polynomial $c(X)b(T) - c(T)b(X)$ has degree at most $\max{\{\deg(b), \deg(c)\}}$ in X. Now $c(X)$ divides $d(X)$ so $\deg(c) \leq \deg(d)$ and thus $\deg(da_i) =$ $\deg(\left(\frac{d}{c}\right)b \ge \deg(b)$. It follows that

$$
\deg(a_i) = \max\{\deg(b), \deg(c)\} \le \max\{\deg(da_i), \deg(d)\} = \deg(da_i) = m \tag{3}
$$

from our choice of index i so the polynomial $c(X)b(T) - c(T)b(X)$ in [\(2\)](#page-1-0) has degree at most m. Also, f_1 has degree m in X therefore from equation [\(2\)](#page-1-0) the polynomial $c(X)b(T) - c(T)b(X)$ has degree exactly m in X and because it is symmetric in X and T it has degree m in T also. It follows that $h(X,T)$ has degree 0 in X, so $h \in F[T]$. We claim that h is non-zero constant. Assume not, divide $h(T)$ from $b(T)$ and $c(T)$ to obtain

$$
b(T) = \lambda_1(T)h(T) + r_1(T)
$$

and

$$
c(T) = \lambda_2(T)h(T) + r_2(T)
$$

substituting this in [\(2\)](#page-1-0) we obtain

$$
f_1(X,T)h(T) = h(T)[c(X)\lambda_1(T) - b(X)\lambda_2(T)] + [c(X)r_1(T) - b(X)r_2(T)]
$$

where $h(T)$ divides $[c(X)r_1(T) - b(X)r_2(T)]$ which has less degree in T than $h(T)$ so

$$
[c(X)r_1(T) - b(X)r_2(T)] = 0 \Rightarrow c(X)r_1(T) = b(X)r_2(T)
$$

but $gcd(b(X), c(X)) = 1$ so $r_1(X)$ is a multiple of $b(X)$ and similarly $r_2(X)$ is a multiple of $c(X)$. Now as r_1, r_2 are remainders we have $deg(r_1(X)) < deg(b(X))$ and $deg(r_2(X)) <$ $deg(c(X))$. Hence $r_1(X) = r_2(X) = 0$ implying $h(T)$ is common factor of $b(X)$ and $g = c(X)$ which contradicts the assumption that $b(X)$ and $c(X)$ are relatively prime. So equation [\(2\)](#page-1-0) becomes

$$
f_1(X,T)h = c(X)b(T) - c(T)b(X)
$$

so

$$
[F(X) : E] = n = \deg_T(f_1) = \deg_T(c(X)b(T) - c(T)b(X))
$$

= $m = \deg(da_i) \geq_{(3)} \deg(a_i) = [F(X) : F(a_i)] \geq [F(X) : E]$

Hence $E = F(a_i)$.

 \Box